Creating a monomeric endonuclease TALE-I-SceI with high specificity and low genotoxicity in human cells
نویسندگان
چکیده
To correct a DNA mutation in the human genome for gene therapy, homology-directed repair (HDR) needs to be specific and have the lowest off-target effects to protect the human genome from deleterious mutations. Zinc finger nucleases, transcription activator-like effector nuclease (TALEN) and CRISPR-CAS9 systems have been engineered and used extensively to recognize and modify specific DNA sequences. Although TALEN and CRISPR/CAS9 could induce high levels of HDR in human cells, their genotoxicity was significantly higher. Here, we report the creation of a monomeric endonuclease that can recognize at least 33 bp by fusing the DNA-recognizing domain of TALEN (TALE) to a re-engineered homing endonuclease I-SceI. After sequentially re-engineering I-SceI to recognize 18 bp of the human β-globin sequence, the re-engineered I-SceI induced HDR in human cells. When the re-engineered I-SceI was fused to TALE (TALE-ISVB2), the chimeric endonuclease induced the same HDR rate at the human β-globin gene locus as that induced by TALEN, but significantly reduced genotoxicity. We further demonstrated that TALE-ISVB2 specifically targeted at the β-globin sequence in human hematopoietic stem cells. Therefore, this monomeric endonuclease has the potential to be used in therapeutic gene targeting in human cells.
منابع مشابه
Creating highly specific nucleases by fusion of active restriction endonucleases and catalytically inactive homing endonucleases
Zinc-finger nucleases and TALE nucleases are produced by combining a specific DNA-binding module and a non-specific DNA-cleavage module, resulting in nucleases able to cleave DNA at a unique sequence. Here a new approach for creating highly specific nucleases was pursued by fusing a catalytically inactive variant of the homing endonuclease I-SceI, as DNA binding-module, to the type IIP restrict...
متن کاملSite- and strand-specific nicking of DNA by fusion proteins derived from MutH and I-SceI or TALE repeats
Targeted genome engineering requires nucleases that introduce a highly specific double-strand break in the genome that is either processed by homology-directed repair in the presence of a homologous repair template or by non-homologous end-joining (NHEJ) that usually results in insertions or deletions. The error-prone NHEJ can be efficiently suppressed by 'nickases' that produce a single-strand...
متن کاملThe I-TevI Nuclease and Linker Domains Contribute to the Specificity of Monomeric TALENs
Precise genome editing in complex genomes is enabled by engineered nucleases that can be programmed to cleave in a site-specific manner. Here, we fused the small, sequence-tolerant monomeric nuclease domain from the homing endonuclease I-TevI to transcription-like activator effectors (TALEs) to create monomeric Tev-TALE nucleases (Tev-mTALENs). Using the PthXo1 TALE scaffold to optimize the Tev...
متن کاملDirected evolution of homing endonuclease I-SceI with altered sequence specificity.
Homing endonucleases recognize specific long DNA sequences and catalyze double-stranded breaks that significantly stimulate homologous recombination, representing an attractive tool for genome targeting and editing. We previously described a two-plasmid selection system that couples enzymatic DNA cleavage with the survival of host cells, and enables directed evolution of homing endonucleases wi...
متن کاملDirected evolution and substrate specificity profile of homing endonuclease I-SceI.
The laboratory evolution of enzymes with tailor-made DNA cleavage specificities would represent new tools for manipulating genomes and may enhance our understanding of sequence-specific DNA recognition by nucleases. Below we describe the development and successful application of an efficient in vivo positive and negative selection system that applies evolutionary pressure either to favor the cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 43 شماره
صفحات -
تاریخ انتشار 2015